Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 17(826): eadd4671, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442200

RESUMO

Cells rely on activity-dependent protein-protein interactions to convey biological signals. For chimeric antigen receptor (CAR) T cells containing a 4-1BB costimulatory domain, receptor engagement is thought to stimulate the formation of protein complexes similar to those stimulated by T cell receptor (TCR)-mediated signaling, but the number and type of protein interaction-mediating binding domains differ between CARs and TCRs. Here, we performed coimmunoprecipitation mass spectrometry analysis of a second-generation, CD19-directed 4-1BB:ζ CAR (referred to as bbζCAR) and identified 128 proteins that increased their coassociation after target engagement. We compared activity-induced TCR and CAR signalosomes by quantitative multiplex coimmunoprecipitation and showed that bbζCAR engagement led to the activation of two modules of protein interactions, one similar to TCR signaling that was more weakly engaged by bbζCAR as compared with the TCR and one composed of TRAF signaling complexes that was not engaged by the TCR. Batch-to-batch and interindividual variations in production of the cytokine IL-2 correlated with differences in the magnitude of protein network activation. Future CAR T cell manufacturing protocols could measure, and eventually control, biological variation by monitoring these signalosome activation markers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Antígenos CD19/genética , Membrana Celular , Receptores de Antígenos de Linfócitos T/genética
2.
Mol Psychiatry ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297084

RESUMO

Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.

3.
Sci Rep ; 12(1): 3207, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217690

RESUMO

Neurons encode information by rapidly modifying synaptic protein complexes, which changes the strength of specific synaptic connections. Homer1 is abundantly expressed at glutamatergic synapses, and is known to alter its binding to metabotropic glutamate receptor 5 (mGlu5) in response to synaptic activity. However, Homer participates in many additional known interactions whose activity-dependence is unclear. Here, we used co-immunoprecipitation and label-free quantitative mass spectrometry to characterize activity-dependent interactions in the cerebral cortex of wildtype and Homer1 knockout mice. We identified a small, high-confidence protein network consisting of mGlu5, Shank2 and 3, and Homer1-3, of which only mGlu5 and Shank3 were significantly reduced following neuronal depolarization. We identified several other proteins that reduced their co-association in an activity-dependent manner, likely mediated by Shank proteins. We conclude that Homer1 dissociates from mGlu5 and Shank3 following depolarization, but our data suggest that direct Homer1 interactions in the cortex may be more limited than expected.


Assuntos
Neurônios , Sinapses , Animais , Córtex Cerebral/metabolismo , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
4.
Cell Rep ; 37(9): 110076, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852231

RESUMO

A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.


Assuntos
Piscadela/efeitos dos fármacos , Encéfalo/metabolismo , Metoxi-Hidroxifenilglicol/análogos & derivados , N-Metilaspartato/farmacologia , Mapas de Interação de Proteínas , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Condicionamento Palpebral , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Plasticidade Neuronal , Proteoma/análise , Sinapses/efeitos dos fármacos
5.
Sci Signal ; 14(681)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947797

RESUMO

Neurons maintain stable levels of excitability using homeostatic synaptic scaling, which adjusts the strength of a neuron's postsynaptic inputs to compensate for extended changes in overall activity. Here, we investigated whether prolonged changes in activity affect network-level protein interactions at the synapse. We assessed a glutamatergic synapse protein interaction network (PIN) composed of 380 binary associations among 21 protein members in mouse neurons. Manipulating the activation of cultured mouse cortical neurons induced widespread bidirectional PIN alterations that reflected rapid rearrangements of glutamate receptor associations involving synaptic scaffold remodeling. Sensory deprivation of the barrel cortex in live mice (by whisker trimming) caused specific PIN rearrangements, including changes in the association between the glutamate receptor mGluR5 and the kinase Fyn. These observations are consistent with emerging models of experience-dependent plasticity involving multiple types of homeostatic responses. However, mice lacking Homer1 or Shank3B did not undergo normal PIN rearrangements, suggesting that the proteins encoded by these autism spectrum disorder-linked genes serve as structural hubs for synaptic homeostasis. Our approach demonstrates how changes in the protein content of synapses during homeostatic plasticity translate into functional PIN alterations that mediate changes in neuron excitability.


Assuntos
Transtorno do Espectro Autista , Plasticidade Neuronal , Animais , Homeostase , Camundongos , Neurônios , Sinapses
6.
Mol Psychiatry ; 26(11): 7047-7068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33888873

RESUMO

Early-onset epileptic encephalopathies are severe disorders often associated with specific genetic mutations. In this context, the CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by early-onset seizures, intellectual delay, and motor dysfunction. Although crucial for proper brain development, the precise targets of CDKL5 and its relation to patients' symptoms are still unknown. Here, induced pluripotent stem cells derived from individuals deficient in CDKL5 protein were used to generate neural cells. Proteomic and phosphoproteomic approaches revealed disruption of several pathways, including microtubule-based processes and cytoskeleton organization. While CDD-derived neural progenitor cells have proliferation defects, neurons showed morphological alterations and compromised glutamatergic synaptogenesis. Moreover, the electrical activity of CDD cortical neurons revealed hyperexcitability during development, leading to an overly synchronized network. Many parameters of this hyperactive network were rescued by lead compounds selected from a human high-throughput drug screening platform. Our results enlighten cellular, molecular, and neural network mechanisms of genetic epilepsy that could ultimately promote novel therapeutic opportunities for patients.


Assuntos
Síndromes Epilépticas , Animais , Síndromes Epilépticas/genética , Humanos , Camundongos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases , Proteômica
7.
Science ; 371(6530)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33574182

RESUMO

The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a key role in neural development and function. NOVA1 also includes a protein-coding difference between the modern human genome and Neanderthal and Denisovan genomes. To investigate the functional importance of an amino acid change in humans, we reintroduced the archaic allele into human induced pluripotent cells using genome editing and then followed their neural development through cortical organoids. This modification promoted slower development and higher surface complexity in cortical organoids with the archaic version of NOVA1 Moreover, levels of synaptic markers and synaptic protein coassociations correlated with altered electrophysiological properties in organoids expressing the archaic variant. Our results suggest that the human-specific substitution in NOVA1, which is exclusive to modern humans since divergence from Neanderthals, may have had functional consequences for our species' evolution.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Homem de Neandertal/genética , Neurônios/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , Sistemas CRISPR-Cas , Proliferação de Células , Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Genoma , Genoma Humano , Haplótipos , Hominidae/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Antígeno Neuro-Oncológico Ventral , Organoides , Sinapses/fisiologia
8.
Invest Ophthalmol Vis Sci ; 60(10): 3613-3624, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433458

RESUMO

Purpose: POAG is a progressive optic neuropathy that is currently the leading cause of irreversible blindness worldwide. While the underlying cause of POAG remains unclear, TGF-ß2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment is considered an early pathologic consequence associated with impaired aqueous humor (AH) outflow and elevated IOP. Early studies have also demonstrated markedly elevated levels of oxidative stress markers in AH from POAG patients along with altered expression of antioxidant defenses. Here, using cultured primary or transformed human TM cells, we investigated the role oxidative stress plays at regulating TGF-ß2-mediated remodeling of the ECM. Methods: Primary or transformed (GTM3) human TM cells conditioned in serum-free media were incubated in the absence or presence of TGF-ß2 and relative changes in intracellular reactive oxygen species (ROS) were measured using oxidation-sensitive fluorogenic dyes CellROX green or 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA). TGF-ß2-mediated changes in the content of connective tissue growth factor (CTGF) and collagen types 1α1 (COL1A1) and 4α1 (COL4A1) mRNA or collagens I and IV isoform proteins were determined in the absence or presence of mitochondrial-targeted antioxidants (XJB-5-131 or MitoQ) and quantified by quantitative PCR or by immunoblot and immunocytochemistry. Smad-dependent canonic signaling was determined by immunoblot, whereas Smad-dependent transcriptional activity was quantified using a Smad2/3-responsive SBE-luciferase reporter assay. Results: Primary or transformed human TM cells cultured in the presence of TGF-ß2 (5 ng/mL; 2 hours) exhibited marked increases in CellROX or fluorescein fluorescence. Consistent with previous reports, challenging cultured human TM cells with TGF-ß2 elicited measurable increases in regulated Smad2/3 signaling as well as increases in CTGF, COL1A1, and COL4A1 mRNA and collagen protein content. Pretreating human TM cells with mitochondrial-targeted antioxidants XJB-5-131 (10 µM) or MitoQ (10 nM) attenuated TGF-ß2-mediated changes in Smad-dependent transcriptional activity. Conclusions: The multifunctional profibrotic cytokine TGF-ß2 elicits a marked increase in oxidative stress in human TM cells. Mitochondrial-targeted antioxidants attenuate TGF-ß2-mediated changes in Smad-dependent transcriptional activity, including marked reductions in CTGF and collagen isoform gene and protein expression. These findings suggest that mitochondrial-targeted antioxidants, when delivered directly to the TM, exhibit potential as a novel strategy by which to slow the progression of TGF-ß2-mediated remodeling of the ECM within the TM.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/fisiologia , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo IV/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Óxidos N-Cíclicos/farmacologia , Humanos , Immunoblotting , Imuno-Histoquímica , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Malha Trabecular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
9.
Sci Rep ; 9(1): 10890, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350430

RESUMO

At the post-synaptic density (PSD), large protein complexes dynamically form and dissociate in response to synaptic activity, comprising the biophysical basis for learning and memory. The use of detergents to isolate the PSD and release its membrane-associated proteins complicates studies of these activity-dependent protein interaction networks, because detergents can simultaneously disrupt the very interactions under study. Despite widespread recognition that different detergents yield different experimental results, the effect of detergent on activity-dependent synaptic protein complexes has not been rigorously examined. Here, we characterize the effect of three detergents commonly used to study synaptic proteins on activity-dependent protein interactions. We first demonstrate that SynGAP-containing interactions are more abundant in 1% Deoxycholate (DOC), while Shank-, Homer- and mGluR5-containing interactions are more abundant in 1% NP-40 or Triton. All interactions were detected preferentially in high molecular weight complexes generated by size exclusion chromatography, although the detergent-specific abundance of proteins in high molecular weight fractions did not correlate with the abundance of detected interactions. Activity-dependent changes in protein complexes were consistent across detergent types, suggesting that detergents do not isolate distinct protein pools with unique behaviors. However, detection of activity-dependent changes is more or less feasible in different detergents due to baseline solubility. Collectively, our results demonstrate that detergents affect the solubility of individual proteins, but activity-dependent changes in protein interactions, when detectable, are consistent across detergent types.


Assuntos
Encéfalo/metabolismo , Sinapses Elétricas/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Densidade Pós-Sináptica/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Encéfalo/patologia , Cromatografia em Gel , Ácido Desoxicólico/metabolismo , Detergentes/metabolismo , Camundongos , Octoxinol/metabolismo , Densidade Pós-Sináptica/química , Mapas de Interação de Proteínas , Multimerização Proteica , Solubilidade
10.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560783

RESUMO

Although it has been known for over a decade that the inflammatory mediator NGF sensitizes pain-receptor neurons through increased trafficking of TRPV1 channels to the plasma membrane, the mechanism by which this occurs remains mysterious. NGF activates phosphoinositide 3-kinase (PI3K), the enzyme that generates PI(3,4)P2 and PIP3, and PI3K activity is required for sensitization. One tantalizing hint came from the finding that the N-terminal region of TRPV1 interacts directly with PI3K. Using two-color total internal reflection fluorescence microscopy, we show that TRPV1 potentiates NGF-induced PI3K activity. A soluble TRPV1 fragment corresponding to the N-terminal Ankyrin repeats domain (ARD) was sufficient to produce this potentiation, indicating that allosteric regulation was involved. Further, other TRPV channels with conserved ARDs also potentiated NGF-induced PI3K activity. Our data demonstrate a novel reciprocal regulation of PI3K signaling by the ARD of TRPV channels.


Assuntos
Membrana Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Híbridas , Camundongos , Microscopia de Fluorescência/métodos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
11.
Mol Autism ; 9: 48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237867

RESUMO

Background: Autism spectrum disorders (ASDs) are a heterogeneous group of behaviorally defined disorders and are associated with hundreds of rare genetic mutations and several environmental risk factors. Mouse models of specific risk factors have been successful in identifying molecular mechanisms associated with a given factor. However, comparisons among different models to elucidate underlying common pathways or to define clusters of biologically relevant disease subtypes have been complicated by different methodological approaches or different brain regions examined by the labs that developed each model. Here, we use a novel proteomic technique, quantitative multiplex co-immunoprecipitation or QMI, to make a series of identical measurements of a synaptic protein interaction network in seven different animal models. We aim to identify molecular disruptions that are common to multiple models. Methods: QMI was performed on 92 hippocampal and cortical samples taken from seven mouse models of ASD: Shank3B, Shank3Δex4-9, Ube3a2xTG, TSC2, FMR1, and CNTNAP2 mutants, as well as E12.5 VPA (maternal valproic acid injection on day 12.5 post-conception). The QMI panel targeted a network of 16 interacting, ASD-linked, synaptic proteins, probing 240 potential co-associations. A custom non-parametric statistical test was used to call significant differences between ASD models and littermate controls, and Hierarchical Clustering by Principal Components was used to cluster the models using mean log2 fold change values. Results: Each model displayed a unique set of disrupted interactions, but some interactions were disrupted in multiple models. These tended to be interactions that are known to change with synaptic activity. Clustering revealed potential relationships among models and suggested deficits in AKT signaling in Ube3a2xTG mice, which were confirmed by phospho-western blots. Conclusions: These data highlight the great heterogeneity among models, but suggest that high-dimensional measures of a synaptic protein network may allow differentiation of subtypes of ASD with shared molecular pathology.


Assuntos
Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Lobo Frontal/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Animais , Transtorno do Espectro Autista/genética , Análise por Conglomerados , Feminino , Genótipo , Masculino , Camundongos , Mapas de Interação de Proteínas , Proteômica
12.
J Neurochem ; 146(5): 540-559, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29804286

RESUMO

Cells utilize dynamic, network-level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity-dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity-dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of pre-existing multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Arcabouço Homer/deficiência , Proteínas de Arcabouço Homer/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Cloreto de Potássio/farmacologia , Análise de Componente Principal , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
13.
Exp Eye Res ; 146: 95-102, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26743044

RESUMO

Elevated intraocular pressure (IOP) is causally implicated in the pathophysiology of primary open-angle glaucoma (POAG). The molecular mechanisms responsible for elevated IOP remain elusive, but may involve aberrant expression and signaling of transforming growth factor (TGF)-ß2 within the trabecular meshwork (TM). Consistent with previously published studies, we show here that exogenous addition of TGF-ß2 to cultured porcine anterior segments significantly attenuates outflow facility in a time-dependent manner. By comparison, perfusing segments with a TGFßRI/ALK-5 antagonist (SB-431542) unexpectedly elicited a significant and sustained increase in outflow facility, implicating a role for TM-localized constitutive expression and release of TGF-ß2. Consistent with this thesis, cultured primary or transformed (GTM3) quiescent human TM cells were found to constitutively express and secrete measurable amounts of biologically-active TGF-ß2. Disrupting monomeric GTPase post-translational prenylation and activation with lovastatin or GGTI-298 markedly reduced constitutive TGF-ß2 expression and release. Specifically, inhibiting the Rho subfamily of GTPases with C3 exoenzyme similarly reduced constitutive expression and secretion of TGF-ß2. These findings suggest that Rho GTPase signaling, in part, regulates constitutive expression and release of biologically-active TGF-ß2 from human TM cells. Localized constitutive expression and release of TGF-ß2 by TM cells may promote or exacerbate elevation of IOP in POAG.


Assuntos
Regulação da Expressão Gênica , Glaucoma de Ângulo Aberto/genética , Pressão Intraocular , RNA/genética , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Suínos , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/biossíntese , Proteínas rho de Ligação ao GTP/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...